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ABSTRACT  

Since the global financial crash, one of the main trends in the financial engineering discipline 

has been to enhance the efficiency and flexibility of financial probabilistic risk assessments. 

Creditors could immensely benefit from such improvements in analysis hoping to minimise 

potential monetary losses. Analysis of real world financial scenarios require modeling of 

multiple uncertain quantities with a view to present more accurate, near future probabilistic 

predictions. Such predictions are essential for an informed decision making. In this paper, we 

extend Bayesian Networks Pair-Copula Construction (BN-PCC) further using the minimum 

information vine model which results in a more flexible and efficient approach in modeling 

multivariate dependencies of heavy-tailed distribution and tail dependence as observed in the 

financial data. We demonstrate that the extended model based on minimum information Pair-

Copula Construction (PCC) can approximate any non-Gaussian BN to any degree of 

approximation. Our proposed method has been applied to the portfolio data derived from a 

Brazilian case study. The results show that the fitting of the multivariate distribution 

approximated using the proposed model has been improved compared to other previously 

published approaches. 

Keywords: Complex Dependencies, Financial Modeling, Heavy-tailed Densities, Non-

Gaussian Bayesian Network, Vine Copula Model 

INTRODUCTION  

In recent years, there have been advancements in the efficiency improvement of 

computational algorithms for financial risk modeling (Ramachandran & Chang, 2014; Zhang 

et al., 2018), development of new methodologies for tackling financial prediction in the era of 

Big Data (Jeon et al., 2018) and the introduction of emerging technologies and platforms 

(Chang et al., 2012; Chang et al., 2017) such as cloud that can benefit financial modeling and 

prediction. There are numerous studies that have proved the assumption of normal 

distribution in financial asset returns wrong. In recent decades, there have been numerous 

research works and case studies that have verified the fact that financial applications entail 

heavy-tail distribution. This is where deviation from the mean is far greater than normal 

distribution. Moreover, understanding the implications of heavy-tail distributions is crucial, 

specifically when assessing financial risk. The key to financial risk assessment is to maximise 

the profit and/or return on investment whilst minimizing the potential realistic risks. Risks 

have impact, likelihood or probability which will assist us in calculating the risk value. 

However, catastrophes usually ensue upon convergence of the most extreme events and 



therefore calculating the probability of risk manifestation is the key to an informed decision 

making. We should also note that heavy tailed and super heavy tailed distributions do not 

only appear in financial settings, and they also exist in a variety of other applications and 

domains, including but not limited to environment and weather data, electronic engineering 

for instance heavy tailed noise, hospital patients’ stay statistics and others. In financial 

applications, Bayesian Networks (BNs) and copulas are two common approaches to modeling 

joint uncertainties with probability distributions. In particular, copulas have acclaimed more 

popularity; this is due to fact that with copula we can approximate the probability distribution 

of the data with heavy tail, which is in fact very common in financial applications (Ibragimov 

& Prokhorov, 2017). 

BACKGROUND  

Construction of multivariate distribution would assist us in appropriately examining 

dependencies between multivariate data in real world complexities. In recent years, copulas 

have gained popularity in constructing multivariate distributions and survey dependency 

structures. One of the main advantages of the copula function is to separate dependency 

structure from marginal distributions. Moreover, by using copula function, some quantities 

such as tail dependency which is the dependency between extreme values of the variables, 

can be obtained. A more flexible multivariate copula known as the vine copula model has 

been recently developed (Bedford et al., 2016) for modeling multivariate dependency. This 

hierarchical graphical model was firstly introduced in (Harry, 1997) and later was formulated 

in (Bedford & Cooke, 2001; Bedford & Cooke, 2002). Its structure is based on 

decomposition of a multivariate density into a cascade of bivariate copula. Pair copula 

construction solves the limitation in construction of multivariate copula, and furthermore 

considers the dependency between pair of variables. Bedford et al. (2016) enhanced the 

flexibility of the vine model by proposing a non-parametric bivariate copula. They proposed 

an alternative method which was based on using minimum information copulas. Their 

proposed approximation could offer any level of precision based on the model constraints. In 

contrast, our method offers greater flexibility in specifying copulas. It is straightforward to 

implement, with the only technical assumption of considering the copula density as 

continuous and non-zero. An appropriate approach to build an entropy copula or specifying 

dependency constraints is by moments (Daneshkhah et al., 2012). Moments can be specified 

either on the copula or on the underlying bivariate density. These moment constraints are 

considered as real-valued functions ∅1,..., ∅𝑘 that are required to accept expected values 

𝑒1,…, 𝑒𝑘, respectively. The expected values are then computed based on the provided 

constraints i.e. provided data or experts’ beliefs. In this paper, we improve the fitted 

multivariate density approximation proposed in (Bauer et al., 2012; Bauer & Czado, 2012) 

using a newly developed approximation method based on the entropy method. The 

conditional and joint probabilities of this BN can be derived by constructing an entropy 

copula between the nodes of interests given their parents’ sets. An entropy copula can be 

represented in terms of Polynomial Series (PS), and more flexible ones including 

Orthonormal Polynomial Series (OPS) and Orthonormal Fourier Series (OFS). We 

demonstrate that the approximation accuracy will be notably increased using entropy copula. 

We verify our claim by comparing our approximation with the results illustrated in (Bauer et 

al., 2012) to model the global portfolio data from the perspective of an emerging market 

investor located in Brazil. 



THE PROPOSED APPROXIMATION METHOD 

The standard multivariate copula is not capable of modeling multivariate financial data. An 

alternative to the standard copula model is the PCC model which is more flexible and 

efficient for multivariate data. Nevertheless, PCC model optimization becomes a 

computationally challenging, when the number of variables increases. Bauer et al. (2012) 

attempted to resolve this by capturing conditional independences within data, and proposed a 

new model called Bayesian Network PCC (BN-PCC). This new model is structurally more 

flexible than PCC because of capturing conditional independences within a data structure. 

Additionally, the challenge of computing conditional distributions in graphical models for 

non-Gaussian distributions can be eased using bivariate copulas. Our proposed method 

extends this approach further through using minimum information vine model, with a view to 

computing multivariate dependencies of heavy-tailed distribution and tail dependence (as 

observed in the financial data) in a more efficient and flexible approach. Our proposed model 

based on minimum information PCC can approximate any given non-Gaussian BN to any 

required degree of approximation. Unlike the method developed by Bauer et al. (2012), the 

proposed model is not restricted to the use of parametric pair-copula models. In our approach 

pair-copulas can be approximated using the maximum entropy concept given the limited 

observed data by truncating the corresponding polynomials/bases after k terms, in order to 

meet the restrictions imposed by the data and problem under study. In the case study 

application, we examine three different bases: ordinary polynomial, orthonormal and Fourier 

series and propose the best fitting model based on a goodness-of-fit criterion. 

APPLICATION OF THE CASE STUDY 

OP, OPS and OFS basis families are used to approximate the multivariate distribution 

associated with the selected PCCDAG structure corresponding to case study portfolio data. In 

this section, we attempt to demonstrate the superior flexibility of our approach compared to 

the method proposed by Bauer et al. (2012). 

 

Figure 1: The DAG structure for Brazilian market investor’s daily log returns; the structure has six dimensions and the log 

returns are occurring in the same period of time 

Example: In this example, we have deployed the same data set used in Mendes et al. (2010) 

and in Chatrabgoun et al. (2018) with a view to clearly outline approximation method and for 

comparison purposes. The data consists of concurrent daily log-returns. The dimensions are 

Brazilian composite hedge fund index (ACI), a long-term inflation-indexed Brazilian treasury 

bonds index (IMA-C), Brazilian stock index with the 100 largest capitalization companies 

(IBRX), index of large world stocks computed by MSCI (WLDLg), index of small 



capitalization world companies computed by MSCI (WLDSm), and index of total returns on 

US treasury bonds computed by Lehman Brothers Barra (LBTBond). These data are gathered 

for the windows between January the 2nd, 2002 and October the 20th, 2008 in which 1629 

data items are collected. 

In the first step, the serial correlation within the six-time series are cleared away, to pursue 

the practice of independence of variable observations over time. Henceforth, the serial 

correlation in the conditional mean and the conditional variance are modelled by an AR (1) 

and a GARCH (1,1) model (Aas et al., 2009) respectively. 

To generate a PCC-DAG approximation fitted to this data set using entropy distributions and 

based on the different basis, there is the real challenge of connecting DAG models to vines. 

To specify DAG structure in our data, we apply structure learning algorithms such as the PC 

algorithm to the data ∅−1(.), where ∅ denotes the standard normal cdf. Such a transformation 

is required, as the assessment of conditional independence at %5 significance level by the PC 

algorithm assumes normality. As an alternative approach, expert knowledge is frequently 

exploited to define DAG (Kurowicka & Cooke, 2006). There are also structure selection 

algorithms for non-Gaussian DAG’s available in Bauer et al. (2012) which are similarly 

based on the PC algorithm. We adopt the DAG structure presented in Figure 1 by applying 

the PC algorithm. Moreover, the presented structure for non-Gaussian available DAG in 

(Bauer et al., 2012) produces the same results. Considering the DAG, we decompose the 

multivariate density of the data by applying Theorem 1 in order to derive PCC-DAG structure 

i.e. given the presented DAG, Bauer et al.’s theorem Bauer et al. (2012) prescribes which pair 

copulas need to be specified in the definition of our model. Note that variable 1(ACI) has 

three parents (2 (IMA), 3 (IBrX), and 5 (WldSm)) as the order of the parents are based on the 

heuristic rule of modelling strong bivariate dependences prior to weak dependences. Our 

decision was based on estimates �̂� of Kendall’s 𝜏 variable 1,5 (𝜏 = 0.209), variable 1,3 (𝜏 = 

0.197), and variable 1,2 (𝜏 = 0.127), respectively. Similar rule can be applied for variables 

3(IBrX) and its parents (2(IMA) and 4(WLdLg) based on �̂�  as �̂� 32 = 0.0858, and �̂� 34 = 

0.424. Also, variable 5 have two parents (3(IBrX) and 4(WIdIg)) which are �̂� 53 = 0.402 and 

�̂� 54 = 0.75. Based on these ordering, according to the measure of dependencies Kendall’s, 

the resulting multivariate density decomposition is: 

𝑓1,…,6(𝑥1, … 𝑥6)

= ∏ 𝑓𝑖(𝑥𝑖) × 𝑐15(𝐹1(𝑥1), 𝐹5(𝑥5)) ×  𝑐45(𝐹4(𝑥4), 𝐹5(𝑥5))

6

𝑖−1

×  𝑐46(𝐹4(𝑥4), 𝐹6(𝑥6))  ×  𝑐34(𝐹3(𝑥3), 𝐹4(𝑥4))

×  𝑐13|5( 𝐹1|5(𝑥1|𝑥5), 𝐹3|5(𝑥3|𝑥5))  

×  𝑐12|35(𝐹1|35(𝑥1|𝑥3, 𝑥5), 𝐹2|35(𝑥2|𝑥3, 𝑥5)) 

We now derive the entropy copulae associated with some of the moment constraints between 

copula variables 1, 2, 3, 4, 5, 6 in the density decomposition above. We initially construct 

maximum entropy copulas for unconditional copula 𝑐15, 𝑐46, 𝑐34, 𝑐45. Subsequently, it is 

imperative to establish the bases that should be selected and the number of discretization 

points in each case. We have outlined the approach for the unconditional copula 𝑐15. The 

approach for unconditional copulas 𝑐46, 𝑐34, 𝑐45 is similar. Basis functions could be chosen 

based on the method described in Daneshkhah et al. (2012) i.e. starting with simple bases, 



and moving to more complex ones, and including them until we are satisfied with our 

approximation. Our OP basis functions are as follows, 

𝜓1(. )𝜓1(. ), 𝜓1(. )𝜓2(. ), 𝜓2(. )𝜓1(. ), 𝜓1(. )𝜓3(. ), 𝜓3(. )𝜓1(. ), 

 𝜓2(. )𝜓2(. ), 𝜓2(. )𝜓3(. ), 𝜓3(. )𝜓2(. ), 𝜓1(. )𝜓4(. ), 𝜓4(. )𝜓1(. ), 

 𝜓1(. )𝜓5(. ), 𝜓5(. )𝜓1(. ), 𝜓2(. )𝜓4(. ), 𝜓4(. )𝜓2(. ), 𝜓3(. )𝜓3(. ), … 

OPS basis function constructed using Gram-Schmidt process 

𝜑1(. )𝜑1(. ), 𝜑1(. )𝜑2(. ), 𝜑2(. )𝜑1(. ), 𝜑1(. )𝜑3(. ), 𝜑3(. )𝜑1(. ), 

 𝜑2(. )𝜑2(. ), 𝜑2(. )𝜑3(. ), 𝜑3(. )𝜑2(. ), 𝜑1(. )𝜑4(. ), 𝜑4(. )𝜑1(. ), 

 𝜑1(. )𝜑5(. ), 𝜑5(. )𝜑1(. ), 𝜑2(. )𝜑4(. ), 𝜑4(. )𝜑2(. ), 𝜑3(. )𝜑3(. ), … 

Here, we define 𝜑𝑖(. ) over [0; 1] as follows (Daneshkhah et al., 2012) 

𝜑0(𝑢) = 1 

𝜑0(𝑢) =  

𝑢𝑛  − ∑
∫ 𝑢𝑛𝜑𝑗(𝑢)𝑑𝑢

1

0

∫ 𝜑𝑗
2 (𝑢)𝑑𝑢

1

0

𝜑𝑗(𝑢)𝑛 −1
𝑗=0

‖𝑢𝑛  − ∑
∫ 𝑢𝑛𝜑𝑗(𝑢)𝑑𝑢

1

0

∫ 𝜑𝑗
2 (𝑢)𝑑𝑢

1

0

𝜑𝑗(𝑢)𝑛 −1
𝑗=0 ‖

     𝑛 ≥ 1. 

The OFS basis functions are similarly presented as: 

∅1(. )∅1(. ), ∅1(. )∅2(. ), ∅2(. )∅1(. ), ∅1(. )∅3(. ), ∅3(. )∅1(. ), 

 ∅2(. )∅2(. ), ∅2(. )∅3(. ), ∅3(. )∅2(. ), ∅1(. )∅4(. ), ∅4(. )∅1(. ), 

 ∅1(. )∅5(. ), ∅5(. )∅1(. ), ∅2(. )∅4(. ), ∅4(. )∅2(. ), ∅3(. )∅3(. ), … 

where the general form of ∅1(. ) is given by 

∅0(𝑢) = 1, ∅1(𝑢) =  √2cos (2𝜋𝑢), ∅2(𝑢) =  √2sin(2𝜋𝑢) , 

  ∅3(𝑢) =  √2cos (4𝜋𝑢), ∅4(𝑢) =  √2sin(4𝜋𝑢) , 

  ∅5(𝑢) =  √2cos (6𝜋𝑢), ∅6(𝑢) =  √2sin(6𝜋𝑢) , 

Following the explanations to select basis function in an optimal manner, we add the basis 

functions by using stepwise method outlined in Daneshkhah et al. (2012). In this method, at 

each phase, log-likelihood of adding each additional basis function is assessed. Subsequently, 

function that develops the largest increase in the log-likelihood is included. Additionally, to 

obtain optimal results, first four bases should be considered (Daneshkhah et al., 2012). 

We can now compose the entropy copula density C15 with respect to the uniform 

distributions given the corresponding OP, OPS and OFS constraints above. We would 

initially require identifying the number of discretization points (grid size). A larger grid size 

provides an improved approximation to continuous copula with the expense of more 

computation time. Similarly, in our scenario, the approximation becomes more precise, if we 



run the 𝐷1𝐴𝐷2 algorithm with further iterations, nevertheless, this would consume more 

computational resources including time. Therefore, it could be concluded that the number of 

iterations will depend on the grid size. We consider the approximation errors in the range 

1 × 10−1 to 1 ×  10−24. Thus, the larger the number of grid points used, the larger the 

number of iterations required for convergence; this is the case over any error level. Any grid 

size follows the same pattern where initially a large increase in the number of iterations is 

required to enhance accuracy and a smaller increase is needed when the error is smaller. We 

have selected a grid size of 200 × 200 throughout this example. Considering grid size, 

number of iterations and error size rules (outlined above), we can derive the entropy copula 

𝑐15 associated with the chosen constraints. Expectations 𝛼 of the selected basis, Lagrange 

multiplies values (parameter values) 𝜆 and Log-Likelihood are summarized in Table 1. Log-

Likelihood (L) for PS, OPS, and OFS basis are 93.49, 98.59, and 38.76, respectively. The 

corresponding copulas in terms of the OP, OPS and OFS bases are plotted in Panels (a), (b), 

and (c) in Figure 2 respectively. 

Table 1: The minimally informative copula given moment constraints for OP, OPS, and OFS bases between 1 and 5 

Method Base (𝛼1, 𝛼2, 𝛼3, 𝛼4) (𝜆1, 𝜆2, 𝜆3, 𝜆4) L 

PS (𝜓1𝜓1, 𝜓2𝜓1, 𝜓5𝜓5, 𝜓1𝜓2) (0.27, 0.18, 

0.04, 0.19) 

(14.2, -7.9, 

3.5, -4.1) 

93.49 

OPS (𝜑1𝜑1, 𝜑2𝜑2, 𝜑4𝜑2, 𝜑2𝜑4) (0.29, 0.13, 

0.08, 0.07) 

(0.31, 0.09, 

0.08, 0.04) 

95.59 

OFS (∅2∅2, ∅1∅1, ∅3∅2, ∅3∅4) (0.16, 0.08, 

0.07, 0.07) 

(0.16, 0.08, 

0.07, 0.04) 

37.76 

 

One of the main advantages of using OPS and OFS bases over the ordinary polynomial series 

(Bedford et al., 2016) is that the 𝐷1𝐴𝐷2 algorithm converges in a swifter manner. This is due 

to property of orthogonal bases (OPS & OFS) where adding a new bases does not alter the 

already used Lagrange coefficients in the kernel. On the other hand, this is not the case when 

PS bases is applied [6] to calculate the entropy copula. Therefore, when OP is used, there is a 

need to run 𝐷1𝐴𝐷2 algorithm each time a new bases is added to the already chosen bases. 

This is due to changes in parameter values each time new terms are added. Therefore, more 

iterations are required for the 𝐷1𝐴𝐷2 algorithm to converge. The optimisation time required 

for the 𝐷1𝐴𝐷2 algorithm using the OPS and OFS bases are 9.83 & 8.89 seconds respectively, 

whereas this time for the PS bases is 29.87 seconds. 



 

Figure 2: The minimally informative copula given moment constraints between variable 1 and 5; Panel (a): PS basis, Panel 

(b): OPS basis, and Panel (c): OFS basis 

The other unconditional copula in the decomposition (7) i.e. 𝑐46,𝑐34 and 𝑐45 could be 

similarly calculated. Following a stepwise method, PS, OPS and OFS bases along with their 

corresponding constraints, resulting Lagrange multipliers, and Log-Likelihood (L) are given 

in Table 2.  

Table 2: The minimally informative copula given moment constraints for C46, C34, and C45 

Method Base (𝛼1, 𝛼2, 𝛼3, 𝛼4) (𝜆1, 𝜆2, 𝜆3, 𝜆4) L 

PS PS:(𝜓1𝜓1, 𝜓5𝜓5, 𝜓5𝜓1, 𝜓1𝜓4) 

OPS:(𝜑1𝜑1, 𝜑2𝜑2, 𝜑4𝜑2, 𝜑5𝜑5) 

OFS: (∅2∅2, ∅1∅1, ∅2∅4, ∅4∅2) 

(0.23,0.02,0.06,0.08) 

(-0.18,0.13,-0.06,0.06) 

(-0.11,0.1,-0.08,-0.07) 

(1.4,6.5,-4.7,-4.6) 

( -0.18,0.12,-0.06,0.06) 

(-0.11,0.1,-0.08,0.02) 

44.19 

51.03 

30.37 

OPS PS:(𝜓1𝜓1, 𝜓1𝜓2, 𝜓2𝜓5, 𝜓2𝜓1) 

OPS:(𝜑1𝜑1, 𝜑2𝜑2, 𝜑5𝜑3, 𝜑1𝜑2) 

OFS: (∅2∅2, ∅1∅1, ∅4∅2, ∅2∅4) 

( 0.29,0.21,0.08,0.21) 

( 0.57,0.35,0.1,-0.07) 

( 0.35,0.3,0.19,0.01) 

(36,27.5,10.4,-5.3) 

(0.73,0.23,0.09,0.01) 

(0.4,0.3,0.2,-0.003) 

379.02 

392.4 

245.49 

OFS PS:(𝜓1𝜓1, 𝜓5𝜓5, 𝜓1𝜓2, 𝜓1𝜓4) 

OPS:(𝜑1𝜑1, 𝜑2𝜑2, 𝜑3𝜑3, 𝜑3𝜑1) 

OFS: (∅2∅2, ∅1∅1, ∅2∅4, ∅3∅1) 

( 0.32,0.07,0.23,0.15) 

( 0.88,0.78,0.67,-0.01) 

( 0.8,0.7,0.1,0.09) 

(144,-18.4,-96.3,42.3) 

(2.8,0.73,0.67,-0.01) 

(1.6,1.2,0.52,-0.001) 

1479.6 

1506.3 

1366.1 

 

The approximated maximum entropy copula for these unconditional copula, in terms of the 

PS, OPS and OFS bases, are illustrated in Panels of Figure 3. 

 



 

Figure 3: The minimally informative copula given moment constraints, Panel (a):C46 for PS basis, Panel (b):C46 for OPS 

basis, Panel (c):C46 for OFS basis, Panel (d):C34 for PS basis, Panel (e):C34 for OPS basis, Panel (f):C34 for OFS basis, Panel 
(g):C45 for PS basis, Panel (h):C45 for OPS basis, and Panel (i):C45 for OFS basis. 

Now, the conditional copulas 𝑐13|5, 𝑐23|4 and 𝑐35|4 can similarly be approximated using the 

entropy approach. We only illustrate construction of the conditional maximum entropy 

copula between 𝑐13|5. 𝑐23|4 and 𝑐35|4 can be similarly approximated in a similar way. To 

calculate this copula, we divide the support of 5 into some arbitrary subintervals or bins and 

then construct the conditional copula within each bin. To do this, we select bases in the same 

way as for the unconditional copulas; we then fit the copula to the calculated mean values or 

constraints. We have used four bins so that the first copula is for 13|5 ∈ (0, 0.25). The other 

bins are 13|5 ∈ (0.25, 0.5), 13|5 ∈ (0.5, 0.75), and 13|5 ∈ (0.75, 1). This process can be 

similarly followed for the remaining bins. 

Table 3: Comparison between different models. 

Type of copula AIC 

Bauer et al. (2012) method -3078.62 

entropy copula based on OFS basis -4187.24 

entropy copula based on PS basis -4780.88 

entropy copula based on OPS basis -5339.38 

 

The log-likelihood of the overall Non-Gaussian PCCDAG model using the PS, OPS and OFS 

bases, derived by adding the log-likelihoods of the copulas constructed above, are 2390.44, 

2669.69 and 2093.75, respectively. Now, since the comparison based on comparing the log-

likelihood of presented nonparametric model in this paper and the parametric model of Bauer 

et al. (2012) is not sufficient, and the model complexity measured by the number of 

parameters is left without consideration. Therefore, we compare these methods based on the 

Akaike information criteria (AIC) which includes the model complexity. The AIC of the 



overall Non-Gaussian PCC-DAG model using the PS, OPS and OFS bases are -4780.88, -

5339.38 and -4187.24, respectively. These values are considerably less than the AIC of the 

fitted Non-Gaussian PCC-DAG models to the data using Bauer et al. (2012) method, (with 

AIC equals to -3078.62). The corresponding results are outlined in Table 3. 

CONCLUSIONS 

Gaussian distributions are generally used for modeling and computing financial asset returns, 

risk assessment of capital allocation by banks, and estimating risks associated with financial 

portfolios in actuarial science. However, the existing internal Gaussian models are limited 

when it comes to inference from tails. As opposed to normal Gaussian distributions, copulas 

are known to be a suitable and powerful means for overcoming the flaws in the existing 

techniques. An example for the application of copulas in the abovementioned areas, would be 

the claim allocations and fees’ assignments for investigators, experts, etc. as part of Allocated 

Loss Adjustment Expense (ALAE) processes. An additional case for the application of 

copulas, would be risk assessments conducted by banks and credit institutions for credit and 

market evaluations and judgements; an existing flaw with many of the existing techniques, 

known to be internal bottom-up approaches, for such risks assessments, is that those 

techniques are not capable of modeling joint distribution of non-identical risks. 

There are non-identical approaches to inference in multivariate distributions. BN’s and 

copulas are generally very suitable for modelling such probability distributions. In the 

applications where tail properties are important for predictive probabilistic modeling, many 

of the existing techniques are limited and inadequate. One of the well-known techniques that 

can nicely infer from tail properties is the multivariate Gaussian copula. As stated above, 

many of the current techniques used for financial application modelling, assume a normal 

Gaussian distribution of events for simplifying the complex nature of the financial scenarios 

(as discussed in (Bedford et al., 2016; Chang, 2014; Chang et al., 2015)). The proposed 

methodology for utilising vine structure for approximation, would enable the modeller to 

simply establish non-constant conditional correlations, and minimise the chance of risk 

underestimation. In this paper, we extended the novel method originally presented by Bauer 

et al. (2012) to approximate a multivariate distribution by any Non-Gaussian PCC-DAG 

structure. The novelty of our approach lies within the use of entropy copulas for 

approximation for any level of precision. Furthermore, this approximation offers flexibility 

and manageability. The flexibility of the approach is where any function could be chosen for 

entropy copula constructions. Nevertheless, two conditions should be met within the DAG; 

the multivariate density is continuous and is non-zero. In our method, for approximating a 

multivariate distribution, a DAG structure, a basis family, and the expected values for certain 

functions are required to be identified. Finally, where there is a need to perform a 

computerized analysis of the basis functions, our method offers the ability for approximating 

and modeling of relatively more complex scenarios. 
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