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ABSTRACT 

Lateral vibrations of suspension and compensating ropes in a high-rise elevator system are induced 

by the building motions. When the frequency of the building coincides with the fundamental natural 

frequency of the ropes, large resonance whirling motions of the ropes result. This phenomenon leads 

to impacts of the ropes the elevator walls, making the building and elevator system unsafe. The 

impact loads affect the performance of the elevator installation resulting in interruptions of service 

and damage to the components of the system. Furthermore, the car, counterweight and 

compensating sheave suffer from vertical vibrations due to the coupling with the lateral vibrations 

of the ropes. This paper presents a comprehensive mathematical model of a high-rise elevator 

system taking into account a scenario when the car is parked at the landing level corresponding to 

the resonance length of the ropes. The model is implemented in a high performance computational 

environment and the dynamic response of the system when the building is subject to a low 

frequency sway, is determined through numerical simulation. The results predict a range of 

nonlinear dynamic interactions between the components of the elevator system that play a 

significant role in the operation of the entire installation. 

INTRODUCTION 

Lateral vibrations of the suspension and compensating ropes in a high-rise elevator system are 

induced by the building motions caused by high winds in the in-plane and the out of plane 

directions. When one of the two fundamental frequencies of the building coincides with one of the 

natural frequencies of the ropes, large resonance whirling motions of the ropes result. This 

phenomenon results in impact loads in the elevator shaft, leading to adverse dynamic behavior of 

the elevator system. The impact loads affect the elevator installation resulting in interruptions of 

service and damage to the components of the system. Furthermore, the car, counterweight and 

compensating sheave suffer from vertical vibrations due to the coupling with lateral vibrations of 

the ropes.  

 

The behavior of a suspension rope – elevator car system was studied in [1,2]. The study involved a 

suspension rope of time-varying length with a mass representing an elevator car traveling according 

to a prescribed velocity and acceleration time-profiles. The excitation was implemented though 

harmonic motions applied at the top of the hoist structure. Autoparametric nonlinear nonstationary 

resonance phenomena were then investigated through a range of numerical simulation test.  

 

This paper presents a comprehensive mathematical model of a high-rise stationary elevator system 

taking into account a scenario when the car is parked at the landing level corresponding to the 

resonance length of the compensating ropes. The model is implemented in the MATLAB 

computational environment and the dynamic response of the system when the building is subjected 
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to a low frequency sway in both lateral in-plane and lateral out-plane, is determined using numerical 

simulation techniques. The results predict a range of nonlinear dynamic interactions between the 

components of the elevator system that play a significant role in the operation of the entire 

installation. 

DESCRIPTION OF THE MODEL OF AN ELEVATOR SYSTEM   

The elevator ropes are flexible and have low internal damping. Therefore, at resonance conditions  

they often vibrate at large amplitudes.  

  

The model of an elevator system with a car of mass M1, compensating sheave of mass M2, and 

counterweight of mass M3, is depicted in Fig. 1. The suspension and compensating ropes have mass 

per unit length m1 and m2, elastic modulus E1 and E2, and effective cross-section are A1 and A2, 

respectively. The parameter b1 represents the distance measured from the bottom landing level to the 

center of the compensating sheave. The parameter b2 denotes the distance measured from the center 

of the traction sheave to the center of the diverter pulley and h0 represents the distance measured 

from the bottom landing level to the center of the traction sheave. The parameter htrav is the height 

of travel of the elevator car. The parameter hcar is the height of the car. The parameter hcw is the 

height of the counterweight. The parameter ht is the position of the elevator car measured from the 

bottom landing level to the bottom of the elevator car. 

 

The lengths of the suspension rope and of the compensating rope are defined as follows. The length 

of the suspension rope at the car side measured from the center of the traction sheave to the the 

termination at the car crosshead beam is denoted by L1. The length of the compensating rope at the 

car side measured from the termination at the car bottom to the center of the compensating sheave is 

denoted as L2. The length of the compensating rope at the counterweight side measured from the 

termination at the counterweight to the center of the compensating sheave is denoted by L3. The 

length of the suspension rope at the counterweight side measured from the center of the diverter 

pulley to the termination at the counterweight end is denoted by L4. The mass moment of inertia of 

the diverter pulley and the short stretch of the suspension rope between the pulley and the traction 

sheave is neglected in the simulation model. 

 

The response of the elevator ropes subjected to dynamic loading due to the building sway are 

represented by the lateral in-plane and lateral out of plane displacements denoted as Vi(xi,t) and 

Wi(xi,t) where the subscript i=1,2,3,4 corresponds to the sections of the ropes of length L1, L2, L3, 

and L4, respectively. The lateral in-plane and lateral out of plane motions of the ropes are coupled 

with the longitudinal motions of the ropes that are denoted as Ui(xi,t). The longitudinal motions of 

the car, compensating sheave and counterweight are denoted as UCR(t), UCS(t), and UCW(t), 

respectively. 

 



 

 
Figure 1. Elevator system. 

 

The building structure is subjected to bending deformations in the in-plane and out of plane 

directions, described by the shape function (z), with z denoting a coordinate measured from the 

bottom landing level. The bending deformations result in harmonic motions Cv(t) and Cw(t) of 

frequency v and w and amplitude Av and Aw in the lateral in-plane and lateral out of plane 

directions, respectively.  
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VIBRATION MODEL  

The mean tensions of each stretch of the ropes are expressed as  

  2
1 1 1 1 1 1 2 2( )

2

M g
T x M g m g L x m gL     .                          (1) 

 2
2 2 2 2 2( )
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M g
T x m g L x   .                          (2) 

 2
3 3 2 3 3( )

2

M g
T x m g L x   .                          (3) 

  2
4 4 3 1 4 4 2 3( )
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M g
T x M g m g L x m gL     .                        (4) 

where g is the acceleration of gravity and xi represent the spatial coordinate corresponding to the 

sections of the ropes of length L1, L2, L3, and L4, respectively. The axial Green’s strain measure 

representing stretching of the rope section i is given as  

 2 21

2
i ix ix ixU V W    .                           (5) 

where  
 

x x





 . The equations governing the undamped dynamic displacements Ui(xi,t), Vi(xi,t), 

Wi(xi,t), UCR(t), UCS(t), and UCW(t) can be developed by applying Hamilton’s principle, which yields  
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where  
 

t t





 and an overdot denots the derivative with respect to time. 

According to [3], in high rise buildings the bending motion frequencies v and w are much smaller 

than the longitudinal frequencies of the ropes, and we can assume that no interaction will take place 

between the lateral modes and the longitudinal modes of the ropes. As a result, the longitudinal 

inertia of all ropes can be neglected in Eq. (8) so that the model is reduced to two equations for each 

section of the suspension and compensating rope, respectively. 

 

The boundary conditions in the lateral in-plane direction are defined as  

 

   1 00,V t t .      1 1 1,V L t t .                     (12) 

 

   2 20,V t t .    2 2 , 0V L t  .                      (13) 



 

 

   3 30,V t t .    3 3, 0V L t  .                     (14) 

 

   4 50,V t t .     4 4 4,V L t t .                   (15) 

 

Where 0(t), 1(t), 2(t), 3(t), 4(t), and 5(t) represent the lateral displacements of the structure 

corresponding to the top of the structure and to the position of the car and counterweight (see Fig. 

1). Similarly, the lateral out-plane displacements at the boundaries can be defined in a similar way. 

In order to accommodate the excitation in the equations of motion Eq. 6 and Eq. 7 the overall lateral 

in-plane displacements of each rope is expressed as 
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where  ,i iV x t  are the displacements of the rope relative to the configuration each rope when it is 

stretched by the structure motion. Furthermore, 1 , 2 , 3 , 4 , and 5  are the deformations 

obtained from the shape function (z) which is assumed to be related to the fundamental mode of 

the high rise building and is approximated by a cubic polynomial as follows: 
2 3
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Similarly, the lateral out-plane displacements of each rope are expressed in the same way. Using the 

transformations from Eq. (16) to Eq. (19) in Eq. (6) for the lateral in-plane motion, an approximate 

solution to the nonlinear partial differential equation of motion is determined by using the Galerkin 

method with the following finite series: 
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where ( ) sinir i i

i

n
x x

L




 
  

 
; 1,2,3,...,r N ; with N denoting the number of modes, are the natural 

vibration modes of the corresponding ith rope and ( )irq t  and ( )irz t ; 1,2,...,r N  represent the 

lateral in-plane and lateral out of plane modal displacements, respectively. 

These results in the following set of 4xN ordinary differential equations 
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N

q
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The modal damping represented by the ratios ir  and the undamped time varying natural 

frequencies of the element ir . The irpK  is the stiffness matrix, q

irf  and z

irf  represent the excitation 

force terms and irN  are the nonlinear terms.  

 

Similarly, the equations of motion for the car, compensating sheave, and counterweight from (9) to 

(11) are transformed into the modal coordinates using the transformation  

 

 U Y S                   (29) 

where  
T

CR CS CWU U U U  and  
T

CR CS CWS S S S  is a vector of  modal-coordinates 

corresponding  to the system comprising the car, compensating sheave, and counterweight, 

respectively. If [Y] is the mass-normalized mode shape matrix, the following set of equations 

describing the vertical response of the car, compensating sheave and counterweight: in terms of the 

modal parameters  
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where CR , CS , CW  and CR , CS , CW  denote the modal damping ratios and the natural 

frequencies of the car, compensating sheave and counterweight, respectively, and 
 i

Y  is the ith 

mode shape vector. The 

CR
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CW

F

F F

F

 
 
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 is the excitation vector, and the 

CR
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

 



 
 


 
  

 is a vector with 

components representing the nonlinear couplings with the lateral motions of the ropes.  

CASE STUDY 

The dynamic performance of an elevator system comprising seven ( 1 7n  ) steel wire suspension 

ropes and  four ( 2 4n  ) steel wire compensating ropes of mass per unit length 1 0.723m   kg/m and 

2 1.1m   kg/m, having modulus of elasticity 54535E   N/mm2 and nominal diameters 1 13d  mm 

and 2 16d  mm, respectively. The modal damping ratios for the ropes are assumed as 0.3% across 

all modes and 10% for the lumped mass across all modes. The height measured from the ground 



 

floor level to the center of the traction sheave is 0 88.875h   m, the car and counterweight height is 

4.00cw carh h  m, travel height 80.70travh  m, the car mass with full load is 1 4400M  kg, the 

mass of the compensating sheave is 2 600M  kg, and the mass of the counterweight is 

3 3600M  kg. The elevator car is positioned at the top landing level. The height measured from the 

bottom landing level to the center of the compensating sheave is given as 1 2.02b  m and the height 

from center of the traction sheave to the center of the diverter pulley is 2 0.80b  m. The high rise 

building is excited by the wind harmonically in the lateral in-plane direction with a frequency of 

1.220v  rad/s (0.1941 Hz), amplitude of 0.07vA  m and in the lateral out of plane direction with 

a frequency of 0.314w  rad/s (0.05 Hz) and amplitude of 0.005wA  m. Table 1 shows the 

frequencies of the first 4 modes of the ropes. 

 

Rope No. # 1 Mode [Hz] 2 Mode [Hz] 3 Mode [Hz] 4 Mode [Hz] 

1 11.88 23.76 35.63 47.51 

2 0.19 0.39 0.58 0.80 

3 6.45 12.89 19.35 25.80 

4 0.53 1.06 1.60 2.13 

Table 1. The first 4 natural frequencies of the ropes. 

 

The variation of the first four natural frequencies of the compensating ropes at the car side against 

the position of the elevator car in the hoistway measured from the bottom landing level is shown in 

Fig. 2. The horizontal lines represent the lateral in-plane and the lateral out of plane frequencies of 

the building. 
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Figure 2. Variation of the first four natural frequencies of the compensating ropes at the car side. 

 

The trajectory of the building recorded at the machine room level over time interval of 60 seconds is 

shown in Fig. 3. 
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Figure 3. Trajectory of the building recorded at the machine room level. 

 

The mode shapes corresponding to the vertical vibrations of the car, compensating sheave and 

counterweight are shown in Fig. 4 (a), (b) and (c), respectively. In the first mode (2.58 Hz) the 

compensating sheave and counterweight have greater displacements than the car and they are in 

phase. The second mode (8.54 Hz) is dominated by the car motion with the displacements of the 

compensating sheave and counterweight being almost zero. In the third mode (33 Hz) the car 

motions are negligible and the compensating sheave vibrations are dominant. The displacements of 

the compensating sheave and counterweight are out of phase. 

 

0 1 2 3
-0.02

-0.01

0
(a)  = 16.2053 rad/s (2.5792 Hz)

Y
1

0 1 2 3
-0.01

0

0.01

0.02
(b)  = 53.6858 rad/s (8.5444 Hz)

Y
2

0 1 2 3
-0.04

-0.02

0

0.02
(c)  = 207.3747 rad/s (33.0047 Hz)

Y
3

Coordinates x
1
 = U

CR
, x

2
 = U

CS
, x

3
 = U

CW  
Figure 4. The mode shape displacements of the car, compensating sheave and counterweight. 

 

In order to predict the dynamic response of the ropes and discrete masses, the equations of motion 

Eqs. (27), (28), (30), (31), and (32) are integrated numerically using an explicit Runge-Kutta fourth- 

and fifth-order furmula. The numerical procedure is started from the initial instant 0 0t  s until 

600ft  s.  

 

The lateral in-plane and the lateral out of plane displacements versus time are shown in Fig. 5 (a) 

and (b), respectively. The displacements in the lateral out of plane directions are very small when 

the simulation starts. However, they are increasing with time and whirling motions of the rope result 

as shown in Fig. 6. 
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Figure 5. The mid-span displacements of the compensating rope at the car side with respect to time. 
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Figure 6. Lateral displacement of the compensating ropes at the car side. 

 

0 0.25 0.5 0.75 1
0

0.2

0.4
Frequency of the compensating rope at the car side in the Lateral in-plane direction

Frequency (Hz)

A
m

p
li

tu
d

e
 (

m
)

 
Figure 7. Frequency of the compensating rope at the car side in the Lateral in-plane. 
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Figure 8. Frequency of the compensating rope at the car side in the Lateral out of plane. 

 

The displacement time records of the car, compensating sheave, and counterweight are shown in 

Fig. 9 (a), (b), and (c), respectively, with the corresponding frequency spectra plotted in Fig. 9 (d), 

(e), and (f), respectively. It is evident that the dominant frequency is twice the frequency of the in-

plane excitation (0.39 Hz). The FFT frequency spectra of the lateral in-plane over a time span of 

428.8 – 464.9 s and for the lateral out of plane directions over a time span of 235.5 – 274.1 s are 

Freq=0.05 Hz. 

Freq= 0.19 Hz. 

 

 

Freq=0.19 Hz. 
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shown in Fig. 7 and 8, respectively. It is evident that the dominant frequency is the frequency of the 

in-plane direction (0.19 Hz). 
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Figure 9. Displacements and FFT frequency spectra of the car, compensating sheave, and 

counterweight. 

CONCLUSIONS  

The equations of motion of a stationary elevator system comprising an elevator car, compensating 

sheave, counterweight, with suspension and compensating ropes excited by the high rise building 

motions are derived in this paper. These equations accommodate the nonlinear effects of the rope 

stretching in the lateral in-plane and the lateral out of plane directions. This model is used to predict 

the response of the system. Numerical simulation results show that at the resonance conditions the 

transfer of energy from the lateral in-plane mode to the lateral out of plane mode takes place. While 

the motions of the structure are small, the rope is experiencing large lateral whirling motions. If the 

response of the ropes continue to grow impact phenomena in the hoistway might occur which may 

lead to excessive vibrations of the car and damage to the system components. 
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