
Computing Conference 2018

10-12 July 2018 | London, UK

1 | P a g e

Developing an Asynchronous Technique to Evaluate

the Performance of SDN HP Aruba switch and OVS

Ameer Mosa Al-Sadi, Member, IEEE
Department of Computing & Immersive Technologies

University of Northampton

Northampton, NN2 6JD. United Kingdom

Department of Computer Engineering

University of Technology, Baghdad, Iraq

Ameer.Al-sadi@northampton.ac.uk.

Ali Al-Sherbaz, Member, IEEE, James Xue, Member,

IEEE, Scott Turner, Member, IEEE
Department of Computing & Immersive Technologies

University of Northampton

Northampton, NN2 6JD. United Kingdom

{ Ali.Al-Sherbaz, James.Xue, Scott.Turner }

@northampton.ac.uk.

Abstract— Developers of Software Defined Network (SDN) faces

a lack of or difficulty in getting a physical environment to test

their inventions and developments. That drives them to use a

virtual environment for their experiments. This work addresses

the differences between the SDN virtual environment and

physical SDN switches, which leads to equip a more realistic SDN

virtual environment. Consequently, this paper presents a precise

performance evaluation and comparison of off-the-shelf SDN

devices, HP Aruba 3810M, with Open Virtual Switch (OVS)

inside Mininet emulator. This work examines the variability of

the path delay, throughput, packet losses and jitter of SDN in a

different windows size of the packets and network background

loads. Our conducted experiments consider a number of

protocols such as ICMP, TCP and UDP. In order to evaluate the

network latency accurately, a new asynchronous latency

measurement technique is proposed. The developed technique

shows more precise results in comparison to other techniques.

Furthermore, the work focuses on extracting the flow-setup

latency, caused by the external SDN controller when setting flow

rules into the switch. The comparison of results shows a

dissimilarity in the behaviour of SDN hardware and the Mininet

emulator. The SDN hardware exposed higher latency and flow-

setup time due to extra resources of delay, which the emulator

does not possess.

Keywords—SDN; OpenFlow API; Mininet; OVS; HP VAN

controller; HP Aruba switch; Latency; Throughput; Jitter; Losses.

I. INTRODUCTION

Today's networks are experiencing a tremendous
transformation from the architecture of traditional networks to
SDN. SDN allows automating the network management by
virtue of the centralised programmable control layer, which
administrates the network and its traffic in consonance with the
application requirements. Whereas, the switches in the data
plane act as a ―simple‖ forwarder of flows according to the
rules received from the controller via OpenFlow Application
programming interface (API) [1].

SDN researchers encounter difficulties in access, reserve or
justify the real SDN testbeds to conduct experiments.
Fortunately, promising alternative, explicitly Mininet, is being
integrated into popular software packages of the network, such
as OVS, to comprise a reliable SDN emulator [2]. Mininet is

not viable to reproduce the exact behaviour of SDN vendors
because it uses software switches such as OVS. Also, Mininet
has not matured enough to mimic or follow some industry
standards [3]. Mininet interfaces, switches and hosts could be
configured profitably to any desired specifications, such as
path delay and bandwidth, with the intention of fitting the
behaviour of the admiring vendor. Regarding optimising the
realistic results of Mininet, its specification needs calibrating to
match one of the industrial devices. Therefore, this work aims
to identify the difference between the behaviour of one off-the-
shelf SDN devices, HP Aruba 3810M [4], and OVS inside
Mininet emulator [2]. The finding of this study provides the
research community with useful information in conducting
more realistic emulation. The contributions of this paper as
below:

 Introducing the data-plane measurement metric: this paper
measures the data path latency, throughput, jitter and packet
loss rate under a variable range of windows size of packets
and background traffic.

 Extracting the control-plane metric ―flow-setup latency‖:
beside the data-plane metric, it was essential to bring up the
latency variation of setting a new forwarding rule in switch
flow-table after arriving un-listed flow, called flow-setup
latency in this work. Flow-setup latency extracted from the
same circumstances of data-plane metric, which is
described above.

 Developing an accurate asynchronous latency measurement
technique: of utmost importance was properly executing the
latency measurement using accurate and intimately familiar
tools to persuade any dissenters for the results’ accuracy.
That is why this work develops a simple asynchronous
latency measurement technique which is based on reliable
ping utility to measure the SDN latency.

The remainder of this paper is structured as follows:
Section II presents the background and related work. Section
III contains a brief description of the asynchronous latency
measurement technique. The testbeds description and methods
are exposed in Section IV. An analytical comparison of the
obtained results is discussed in section V. Finally, in section VI
we conclude the work.

Computing Conference 2018

10-12 July 2018 | London, UK

2 | P a g e

II. BACKGROUND AND RELATED WORK

 To optimise the realism of the emulator results, both the
physical and emulated SDN test-beds need to be evaluated,
which demands unified and idealistic measurement tools for
both test-beds. Although, there has been a significant amount
of research in the field of network measurement, it is
imperative to: (1) identify and adjust a suitable measurement
technique which serves the aim of this evaluation (section I);
(2) investigate the findings of other research; (3) exploit their
results as additional evidence that verifies the accuracy of the
result this work. Therefore, a comprehensive literature review
of network measurement was performed to avail the purposes
above. The related work was classified into three parts:
(A) traditional measurement techniques and matrices;
(B) evaluation of virtual switches and emulator; (C) evaluation
of SDN.

A. TRADITIONAL MEASUREMENT TECHNIQUES AND

MATRICES

 In traditional networks, two-way latency can be
obtained using: (a) ping (ICMP) [5]; (b) (SYN-ACK/ACK)
packets of TCP three handshake [6]; (c) TCP Timestamp
option [7]; (d) and two-way UDP packets with embedded
timestamp of connected hosts [5]. Ping is a powerful tool to
extract the end-to-end Round-Trip-Time (RTT). It is a very
effective tool to measure the latency variance in the different
windows size of packets. However, it gives a rough estimation
for one-way latency [5]. Ping tools predominate in latency
measurement research as could be notified in [8][5]. The
second technique to calculate the RTT is based on the
difference in timestamp between the SYN-ACK packet and
ACK packet (second and third packets) of the TCP connection
establishment on the callee side [6]. (SYN-ACK/ACK)
technique is unlike ping in the ability to change the window
size of packets. It can find the RTT only for the small window
size of packets (the packets of TCP three handshake). Both
techniques suffer the additional latency which resulted from
the processing time in the second end-host [8]. The third
method to obtain the RTT is enabling the TCP timestamp
option in TCP header [7]. It provides an acceptable precision of
transmission latency, but it produces an extra payload added to
the real load of original traffic. Sometimes, the packet with
enabled TCP timestamp terminates by firewall devices because
it reveals the timestamp of communicated nodes, which is
clearly described in [8]. Finally, using the two-way UDP with
an embedded timestamp of connected hosts to detect the
Round-trip Delay Time (RTD) or One-way Delay (OWD).
Like the TCP timestamp option, it supplies an accurate latency
but requires a customised benchmark which can test only the
latency of UDP packets [9].

B. EVALUATION OF VIRTUAL SWITCHES AND

EMULATOR

 Open vSwitch was used to emulate the SDN network in
Mininet emulator because it can provide a complete
functionality of the OpenFlow switches [2]. Several works
evaluated Mininet for different purposes using the common
measurement tools. The works in [10][11][12][13] measured
the RTT of Mininet using ping utility. Others evaluated the
RTT with ping and bandwidth of links using Iperf tools

[14][15]. Finally, the ping ICMP packets were used to indicate
controller flow setup time, while the TCP, UDP packets were
emulated to estimate application latency in the Mininet [16].
All pre-mentioned works missed defining the bandwidth limit
of links inside Mininet, which created an unrealistic
measurement. However, their results were a good start point to
realise the behaviour of SDN network and Mininet emulator.

C. EVALUATION OF SDN

 The logically centralised control of SDN adding new
measurement fields such as the latency of the control layer. In
SDN, the methods of determining the network latency would
be handled by the data plane or by the control plane.

On the one hand, most works used the controller to
compute the path latency in different ways. The authors in
[17][18][19] sent probe packets from the controller which
passed through the path back to the controller. The path latency
extracted by subtracting the control path latency from the
difference of sending and receiving timestamps. The work in
[20][21][22] uses the same method except for the way of
determining the path. The path is passively determined after
collecting all the entries of the flow-table from the OpenFlow
switches, then sending a probe packet from the controller to
compute the paths latency. Another piece of research uses the
looping technique by applying a loop of special service packets
through the path with specified Time-to-live (TTL). OpenFlow
switches on that path: (a) decrement TTL; (b) register number
of iteration; (c) and forward the packet in the loop while the
TTL is not zero, otherwise, forward it to the controller. The
controller then calculates the latency using TTL and iteration
number [23][24]. Another piece of research proposed the
Queue Length Method [23]. It considers the processing,
propagation and transmission delay as constant values and uses
the detected queuing delay to estimate the path delay.

On the other hand, some researchers deny over-heading the
controller with additional computation. Also, they noticed that
the control layer latency varies more than the switch
forwarding latency, which heavily affects the accuracy of
latency measurement of the data path [20][25]. For example,
[25] employs a monitoring host in data-plane to measure the
path latency using an active probe packet. Also, [14] uses the
traditional ping and Iperf tool to identify the latency and
bandwidth of network in his study.

Finally, few studies focus on resolving the control layer
latencies. [26] creates a python script to probe packets between
OpenFlow switches and controller to dissect fractions of the
control layer latency. [27] studies the effect of varying the load
of the control plane on it is latency using background control
probe packets and ping utility on the Pica8 physical switch. At
last, High-Fidelity Switch Models for SDN Emulation [3] is
the most related work to this paper. It tests and compares flow-
setup latency of the HP ProCurve, Quanta, and Monaco
physical switches with OVS. The OVS was emulated on Linux
based virtual machine and not in Mininet. The test in [3] is
limited to measure the control layer latency under different
conditions while missing the measurement and comparison of
data plane latency, While this paper measures the data plane
latency on the physical and Mininet testbeds.

Computing Conference 2018

10-12 July 2018 | London, UK

3 | P a g e

III. A BRIEF DESCRIPTION OF THE PROPOSED

ASYNCHRONOUS LATENCY MEASUREMENT

TECHNIQUE

Since the intent here is to extract actual path latency and
not its approximation, ping utility might not fulfil the purpose
by itself. For the reason that, the RTT which is computed by
ping tool comprising an extra processing time which belongs to
the callee side. Therefore, simple steps were added to optimise
the latency which obtained from RTT of the ping tool, as
follows:

1. Ping from sender to receiver as shown in figure1.

2. Capturing the send request at both sides to record the
timestamp of:

 a) Send-Request-Time (SReqT) at the sender.

 b) Received-Request-Time (RReqT) at receiver.

3. Capturing the returned reply at both sides to record the
timestamp of:

a) Send-Reply-Time (SRepT) at receiver.

b) Received- Reply -Time (RRepT) at the sender.

4. Compute processing time (Δ2) in the receiver side ―callee
side‖ by subtracting (SRepT) from (RReqT):

 Δ2 = (SRepT) - (RReqT) (1)

5. Compute the actual Latency from ping RTT in two steps:

a) Calculate the ping RTT (Δ1):

 RTT = Δ1 = (RRepT)- (SReqT) (2)

b) Calculate two-way-latency (Δ3):

 Two-way-Path-latency= Δ3= Δ1- Δ2 (3)

6. Compute the one-way-latency :

 One-way-latency= Δ3/2 (4)

Fig.1. The proposed asynchronous latency measurement technique.

The (Δ3) represents two-way-latency through the switch

with considering that the link delay is negligible. For the
reason that the maximum propagation delay for 1 meter
approximate to 5.5 ns [28].

One-way latency is half of two-way latency, while SDN
provides the same path for the request and the reply packets. In
that technique, it is possible to compute the two-way or one-
way path latency accurately. Also, it demonstrates parity with
one-way synchronised techniques without the severing of
synchronising the end host or customising a software
benchmark. Furthermore, it can be used to measure the
accurate latency for any traffic such TCP, UDP, ICMP, etc.

IV. THE TESTBEDS DESCRIPTION AND METHODS

This section briefly describes the testbeds components and
topology followed by the measurement methods.

A. Testbeds description:

 The tests are performed in the SDN laboratory of the
University of Northampton. Two testbeds were used to
examine the physical and emulated SDN. The physical testbed
comprises of: HP VAN SDN Controller 2.7.18 [29] which runs
over a VirtualBox on a dedicated machine; physical HP Aruba
3810M SDN switch [4], which construct a single topology as
shown in figure 2; Four computers represent the communicated
hosts; and, one-gigabit connections. Meanwhile, the emulated
testbed consists of the same controller mentioned above and
Mininet emulator, which hosted on the single server. Mininet
emulated single topology as well with FastEthernet speed
connection 1000Mbit/s, figure 2.

All machines are running Windows 8.1, 64-bit with an Intel
Core i7 CPU and 16 GB of RAM. Additionally, the server
which hosted the controller and Mininet has an SSD hard drive.

Fig.2. The testbed Structure.

B. Measurement methods:

The Measurement method is divided into three types of
measurement; they are ―Latency‖, ―Throughput‖ and ―Jitter
and packet losses‖ measurement. Every measurement type has
several tests which will be described below. For studying the
impact of background traffic on foreground traffic, every test
performed three times. The first time the test measured the
performance of SDN only with foreground traffic between H2
and H1, see figure 2. In the second and third times, the
foreground traffic was tested after saturating the network with
background traffic, where both H3 and H4 sent background
traffic to H1 with 250 and 375 Mbit/s. That saturated the
network with total background traffic of 500 and 750 Mbit/s
for the second and third times respectively. Next will be a brief
demonstration of three measurement types and their tests:

1) Latency measurement. Firstly, path latency was
measured using: (a) the ping utility; (b) the proposed

Computing Conference 2018

10-12 July 2018 | London, UK

4 | P a g e

asynchronous latency measurement technique; (c) and (SYN-
ACK/ACK) measurement technique, which showed in section
II.A. The results of these three techniques were compared to
show the accuracy of the proposed measurement technique. In
ping and asynchronous latency measurement technique, the test
performed for three windows size of packets 1.5, 10 and 65
KBytes. The three windows size help to discriminate SDN
behaviour for small, medium and large application packets.
Whereas, for (SYN-ACK/ACK) measurement technique, the
test performed only for a small window size of packets because
the window size always starts small through the three
handshake process of TCP connection. The results represent
the average value of RTT for twenty pings or TCP probe
packets.

Secondly, the flow-setup latency found from the RTT of
the first packet of each flow. It was extracted from ping and the
proposed asynchronous technique as same as the procedure
mentioned above.

2) Throughput measurement. The throughput was tested for
TCP and UDP traffic with four different windows size of the
packets. This time, the test was done with 1.5, 10, 65 and 150
KByets as a window size for foreground traffic. The reason for
adding a window size of 150 KByets was that the UDP traffic
was not able to achieve the maximum throughput with a
window size of 65Kbytes on HP Aruba switch, see figure 5-b.
The results averaged the throughput of a twenty TCP/UDP
connection transmitted for 120 seconds using Iperf tool.

3) Jitter and packet losses measurement. Both of them were
obtained for UDP traffic with four different windows size of
the packets, similar to the throughput measurement. The results
calculated the average of twenty UDP connection lasted for
120 seconds using Iperf as well.

V. RESULTS EVALUATION

This section will discuss the results which were obtained
from the practical implementation of experimental traffic on
real components.

A) Path latency. The proposed asynchronous technique
(figure 3-b) showed more accurate results than ping
measurement (figure 3-a). The proposed technique shows
lower latencies values which increased linearly with the
increment of network background load, while ping shows
higher and unstable latencies. The SYN-ACK/ACK technique
(figure 3-c) showed near results to the results of the proposed
technique but only for a small window size of packets. That
verified the accuracy of the results of this work.

In the results of the proposed technique, HP Aruba switch
occupied latency (red-line) ten times larger than OVS latency
(green-line) for the small window size of packets (1.5 KByets).
Meanwhile, this difference reduced to four-times of latency in
a window size of 10 KByets and became only two times the
latency for a window size of 65 KByets.

B) Flow-setup latency. The flow-setup latency of the small
window size of packets and zero background load was around
280ms for HP Aruba switch (red-line) and 3ms for OVS

(green-line), when computed by the proposed asynchronous
technique, see figure 4-b. Diversely, flow-setup latency got
around 400ms for HP Aruba switch (red-line) and 3.5ms for
OVS (green-line), if extracted from ping RTT, see figure 4-a.
The difference in latency between the two techniques resulted
from removing the processing latency of the second end from
the flow-setup latency. That is proving the results validity of
the asynchronous latency measurement technique specifically
for the physical testbed.

Additionally, it is feasible from the figure 4 that, the
difference in flow-setup latency between the real network and
Mininet emulator is very big. The latency variation ranges
from 100 to 40 times of flow-setup latency for small to the
large window size of packets. Finally, all latencies increased
with the rising of the background traffic of the network.

C) Throughput. As displayed in figure 5, physical and
emulated SDN provide different throughput. However, the
links of both testbeds were configured with the same
bandwidth. On the one hand, HP Aruba generates very poor
TCP throughput with a small window size of packets while
OVS presents higher TCP throughput. On the other hand, HP
Aruba provides best TCP throughput with a large window size
of packets.

The throughput of UDP traffic changed a lot in HP Aruba
switch according to the window size of packets while a small
variation of UDP throughput occurs in OVS. TCP/UDP
throughput degraded when the background traffic of network is
boosted.

D) Jitter and Packet Losses rate. The tests showed that
OVS possess a lower jitter and packet losses rate than HP
Aruba switch. However, the jitter and packet losses rate of HP
Aruba are more responsive to the change of window size of
packets and network background traffic, see figure 6.

VI. CONCLUSION

 This paper reveals that there is a gap in the performance
of the physical and emulated SDN testbeds. This difference in
their behaviour needs to be identified precisely in terms of
optimising the results realism of the emulator. Therefore, this
work performed a comprehensive literature review about
network measurement techniques to select the optimal
techniques for accurate measurements. Also, the literature
review discloses that the measurement techniques which
employed the controller for monitoring demonstrate more
efficiency for real-time and estimated latency measurement.
Whereas, the measurement techniques which exploited the data
plane provide more accurate measurement (see section II.C).
After that, this work develops an accurate measurement
technique in data plane namely, "Asynchronous Latency
measurement technique", to study and compare the
performance of the two testbeds. The findings of this study are
as follows: the path latency of physical SDN is noticeably
larger than the Mininet; the flow-setup latency is massively
greater in physical devices; Mininet possesses less reactivity
for the changes of the window size of packets and background
load than the physical testbed regarding throughput, jitter and
losses packet rate.

Computing Conference 2018

10-12 July 2018 | London, UK

5 | P a g e

Fig.6. Jitter and losses packet rate measurement comparison between Mininet (OVS) and Physical testbed (HP Aruba) for UDP traffic using Iperf.

Fig.3.Two-Way Latency measurement comparison between Mininet (OVS) and Physical testbed (HP Aruba) in three different techniques.

Fig.4. Flow setup Latency measurement comparison between Mininet (OVS) and Physical testbed (HP Aruba) in two different techniques.

Fig.5. Throughput measurement comparison between Mininet (OVS) and Physical testbed (HP Aruba) for TCP and UDP traffic using Iperf.

Note:

Links Bandwidth =1Gbps,

for Mininet and physical

testbed.

Computing Conference 2018

10-12 July 2018 | London, UK

6 | P a g e

Fortunately, Mininet composes of configurable
components. Therefore, this shortage in its performance could
be overcome by calibrating this emulator with parameters
which degrade the result differences from the physical SDN
and optimise its results realistically.

The probable future work, this study could be extended to:

 Evaluate other SDN switches.

 Evaluate SDN switches from a different aspect
such as the effect of application layer on switch
performance.

 Optimising Mininet performance to match the
behaviour of a specific vendor of physical SDN
switches.

ACKNOWLEDGMENT

This work was supported in part by Iraqi Ministry of
Higher Education and Scientific Research - scholarship
no.21573 for the first author.

REFERENCES

[1] O. N. Foundation, ―Software-Defined Networking (SDN) Definition -
Open Networking Foundation,‖ 2015. [Online]. Available:

https://www.opennetworking.org/sdn-resources/sdn-definition.

[Accessed: 02-Dec-2014].

[2] Mininet Team, ―Mininet Overview,‖ 2016. [Online]. Available:

http://mininet.org/overview/. [Accessed: 04-Jun-2016].

[3] D. Y. Huang, K. Yocum, and A. C. Snoeren, ―High-Fidelity Switch
Models for Software-Defined Network Emulation,‖ Proc. Second ACM

SIGCOMM Work. Hot Top. Softw. Defin. networking. ACM, 2013.

[4] H. Packard Enterprise, ―Aruba 3810M Switches Installation and Getting
Started Guide,‖ 2016.

[5] J. Wang, M. Zhou, and Y. Li, ―Survey on the End-to-End Internet Delay

Measurements,‖ Springer, Berlin, Heidelberg, 2004, pp. 155–166.

[6] Dhaval N. Shah, Virupaksh Honnur, Dalen, and D. Bosteder, ―System

and method for measuring round trip times in a network using a TCP

packet,‖ U.S. Patent No. 6,446,121., 2002.

[7] V. Jacobson, R. Braden, and D. Borman, ―RFC 1323,TCP extensions for

high performance,‖ pp. 1–38, 1992.

[8] I. Prieto, M. Izal, E. Magaña, and D. Morato, ―A Simple Passive Method
to Estimate RTT in High Bandwidth-Delay Networks,‖ in The Seventh

International Conference on Evolving Internet, 2015.

[9] F. Sans and E. Gamess, ―Analytical Performance Evaluation of
Different Switch Solutions,‖ J. Comput. Networks Commun., vol. 2013,

pp. 1–11, 2013.

[10] F. Keti and S. Askar, ―Emulation of Software Defined Networks Using

Mininet in Different Simulation Environments,‖ in 2015 6th

International Conference on Intelligent Systems, Modelling and
Simulation, 2015, pp. 205–210.

[11] P. Danielis, V. Altmann, J. Skodzik, E. B. Schweissguth, F. Golatowski,

and D. Timmermann, ―Emulation of SDN-supported automation
networks,‖ in 2015 IEEE 20th Conference on Emerging Technologies &

Factory Automation (ETFA), 2015, pp. 1–8.

[12] Gustaf Jan Gunnar Nilstadius, ―Software defined networks with high
availability,‖ Czech technical university, Department of

Telecommunication Engineering, 2016.

[13] S.-Y. Wang, ―Comparison of SDN OpenFlow network simulator and

emulators: EstiNet vs. Mininet,‖ in 2014 IEEE Symposium on

Computers and Communications (ISCC), 2014, pp. 1–6.

[14] M. Koerner and O. Kao, ―Evaluating SDN based Rack-to-Rack Multi-

path Switching for Data-center Networks,‖ Procedia Comput. Sci., vol.

34, pp. 118–125, 2014.

[15] I. Zoher Bholebawa and U. D. Dalal, ―Design and Performance Analysis

of OpenFlow-Enabled Network Topologies Using Mininet,‖ Int. J.

Comput. Commun. Eng. 5.6, p. 419, 2016.

[16] D. Turull, M. Hidell, and P. Sjodin, ―Performance evaluation of

openflow controllers for network virtualization,‖ in 2014 IEEE 15th

International Conference on High Performance Switching and Routing
(HPSR), 2014, pp. 50–56.

[17] K. Phemius and M. Bouet, ―Monitoring latency with OpenFlow,‖ Netw.

Serv. Manag. (CNSM), 2013 9th Int. Conf. on. IEEE, 2013.

[18] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, ―OpenNetMon:

Network monitoring in OpenFlow Software-Defined Networks,‖ in

2014 IEEE Network Operations and Management Symposium (NOMS),

2014, pp. 1–8.

[19] C. Yu, C. Lumezanu, A. Sharma, Q. Xu, G. Jiang, and H. V

Madhyastha, ―Software-defined Latency Monitoring in Data Center
Networks,‖ Int. Conf. Passiv. Act. Netw. Meas. Springer Int. Publ., pp.

360–372, 2015.

[20] S. Wang, J. Zhang, T. Huang, J. Liu, Y. Liu, and F. R. Yu, ―FlowTrace:
measuring round-trip time and tracing path in software-defined

networking with low communication overhead,‖ Front. Inf. Technol.

Electron. Eng., vol. 18, no. 2, pp. 206–219, Feb. 2017.

[21] K. Agarwal, E. Rozner, C. Dixon, and J. Carter, ―SDN traceroute:

Tracing SDN Forwarding without Changing Network Behavior,‖ Proc.

third Work. Hot Top. Softw. Defin. networking. ACM, pp. 145–150,
2014.

[22] sFlow.org, ―sFlow: Software defined networking,‖ 2012. [Online].

Available: http://blog.sflow.com/2012/05/software-defined-
networking.html. [Accessed: 07-May-2017].

[23] D. Sinha, K. Haribabu, and S. Balasubramaniam, ―Real-time monitoring

of network latency in Software Defined Networks,‖ in 2015 IEEE
International Conference on Advanced Networks and

Telecommuncations Systems (ANTS), 2015, pp. 1–3.

[24] V. Altukhov and E. Chemeritskiy, ―On real-time delay monitoring in
software-defined networks,‖ in 2014 First International Science and

Technology Conference (Modern Networking Technologies)

(MoNeTeC), 2014, pp. 1–6.

[25] A. Atary and A. Bremler-Barr, ―Efficient Round-Trip Time monitoring

in OpenFlow networks,‖ in IEEE INFOCOM 2016 - The 35th Annual

IEEE International Conference on Computer Communications, 2016,
pp. 1–9.

[26] M. Kuniar, P. Perešíni, and D. Kosti, ―What you need to know about

SDN control and data planes,‖ No. EPFL-REPORT-199497, 2014.

[27] J. Sonchack, A. J. Aviv, and E. Keller, ―Timing SDN Control Planes to

Infer Network Configurations,‖ Proc. 2016 ACM Int. Work. Secur.
Softw. Defin. Networks Netw. Funct. Virtualization. ACM., 2016.

[28] G. Beckhoff Automation GmbH & Co. KG, ―Infrastructure for

EtherCAT/Ethernet Technical recommendations and notes for design,
implementation and testing Table of contents,‖ 2017.

[29] H. Packard Enterprise, ―HPE VAN SDN Controller OVA: Free Trial |

SDN App Store,‖ 2017. [Online]. Available:
https://marketplace.saas.hpe.com/sdn/content/hpe-van-sdn-controller-

ova-free-trial. [Accessed: 07-May-2017].

